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’ INTRODUCTION

Auniversal challenge in the chemical sciences is relating function
to molecular structure. Linear free energy relationships (LFER)
have served a fundamental role in physical organic chemistry by
providing a quantitative correlation between reactivity and single
group substitution.1 Throughout the last century, the use of
LFERs has been extended to include a multitude of parameters
including steric2 and electronic3 effects as well as lipophilicity4 and
polarizability.5 Presently, extended forms of LFERs, namely, quan-
titative structure�activity relationships (QSARs), are a fundamen-
tal foundation upon which hypotheses of the biological function of
smallmolecules are built.6 In contrast to the extensive application of
QSAR methods to probe biological problems, these methods have
only recently been applied to problems in chemical catalysis with
respect to catalyst activity and selectivity.7 An area of catalysis for
which QSAR methods exhibit high potential for applicability is
phase-transfer catalysis (PTC).

A few interrelated aspects of QSAR methods are particularly
attractive for application toward asymmetric phase-transfer cat-
alysis (APTC) and warrant mention. First, QSAR methods have
proven useful in understanding the relationship between the
physicochemical properties of small molecules and the kinetics of
their transfer across an interfacial barrier between two immiscible
phases such as that present in all PTC systems.8 Second, QSAR
methods have been extensively employed (and many descriptors
developed) to investigate intermolecular, noncovalent interactions
(such as drug-receptor binding) that are the hallmark of reactions

under PTC. Third, QSAR methods are well suited for
discovery-oriented, informatics-based research and hypothesis
generation.9,10 Last, and most important, is that QSAR methods
generate mathematical equations that facilitate the formulation
of hypotheses, which logically leads to their application as a
predictive tool. The ability to predict catalyst activity or selec-
tivity a priori continues to serve as one of the “Holy Grails” of
catalysis. This notion may be equally applied to APTC.

The scarcity of design criteria for asymmetric phase-transfer
catalysts in comparison to homogeneous catalysts has led to a
rather unfortunate quandary for the methodological practitioner
of organic chemistry hoping to develop new asymmetric phase-
transfer catalysts. Currently, while one may consider what
structural features should be included to impart enantioselec-
tivity, the question of whether the envisioned catalyst will
efficiently promote the desired reaction remains largely unan-
swered. For these reasons, we sought to investigate quantitative
structure�activity/selectivity relationships to describe the rate
enhancement and enantioselectivity exhibited by phase-transfer
catalysts. The first part of this endeavor, the synthesis and
evaluation of quaternary ammonium ion catalysts, has been
extensively described in the preceding paper.11 Herein, we report
our efforts toward developing quantitative models for the
enantioselectivity and activity of these catalysts.
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ABSTRACT: Although the synthetic utility of asymmetric
phase-transfer catalysis continues to expand, the number of
proven catalyst types and design criteria remains limited. At the
origin of this scarcity is a lack in understanding of how catalyst
structural features affect the rate and enantioselectivity of phase
transfer catalyzed reactions. Described in this paper is the
development of quantitative structure�activity relationships
(QSAR) and �selectivity relationships (QSSR) for the alkyla-
tion of a protected glycine imine with libraries of quaternary
ammonium ion catalysts. Catalyst descriptors including ammo-
nium ion accessibility, interfacial adsorption affinity, and partition coefficient were found to correlate meaningfully with catalyst
activity. The physical nature of the descriptors was rationalized through differing contributions of the interfacial and extraction
mechanisms to the reaction under study. The variation in the observed enantioselectivity was rationalized employing a comparative
molecular field analysis (CoMFA) using both the steric and electrostatic fields of the catalysts. A qualitative analysis of the developed
model reveals preferred regions for catalyst binding to afford both configurations of the alkylated product.
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’BACKGROUND

1. Catalyst Activity.The primary objective of QSARmethods
is to quantitatively model the variation in an activity observable
as a function of variation in structure. Ideally, if physically
meaningful descriptors are employed the origin of the relation-
ship between structure and activity may be revealed. The most
common experimental implementation of QSAR methods in
the study of reactivity involves examining substrate reactivity
as a function of systematic changes in a substituent. Apart from a
few notable exceptions, the literature is deficient in reports on the
application of quantitative methods to study catalyst activity.
Among the most influential examples are studies that forged the
concepts of general and specific acid and base catalysis.12

Another recent example in the field of homogeneous catalysis
is a systematic study of catalyst activity as a function of the
hydrogen bond donating ability of a catalyst (pKa).

13 Finally,
attempts to utilize QSAR methods to study catalysts for
polymerization14 and homogeneous15 and heterogeneous cata-
lysis are on record.16

For phase-transfer catalysts, structure�activity relationships
have been established for simple, acyclic, achiral, quaternary
ammonium ions that promote PTC reactions of small hydro-
philic nucleophiles (e.g., cyanide, azide, thiolates).17 Such rela-
tionships for hydroxide-initiated PTC reactions are primitive by
comparison.18 Typically, in these cases, the number of catalysts
surveyed is less than 20 and the degree of structural variation is
also limited.19 The most commonly used structural features are
the number of carbons in the catalyst, and the ammonium ion
accessibility.18 Accessibility is treated in a very limited, semi-
quantitative manner that is applicable only to achiral, acyclic,
unfunctionalized ammonium ions.20 In a similar way, the hard
�soft acid base principle (HSAB) is often employed in a
qualitative sense to rationalize the difference in reactivity of small
(hard or accessible) ammonium catalysts vs large (soft or
inaccessible) quaternary ammonium phase transfer catalysts.21

In contrast to the small number of QSAR reports on catalyst
activity, the literature is replete with QSAR studies on processes
closely related to the fundamental steps of PTC including, inter
alia, the rate of membrane permeation of small molecules,22

micelle formation,23 and aqueous/organic phase-transfer rates.24

The capacity for such descriptive models to be predictive is
increasing rapidly. Furthermore, studies of these phenomena
have elucidatedmany of the key structural features which are now
included as descriptors in a number of computational suites for
drug design.25

2. Enantioselectivity. The field of computational drug design
also offers methods capable of facilitating the elucidation of the
structural features responsible for enantiotopic molecular recog-
nition. Enantioselectivity has been modeled using geometrical
descriptors such as steric size,26 topological indices,27 continuous
chirality quantification methods28 that indirectly account for
3-dimensionality, as well as various molecular interaction field
(MIF) analyses. A MIF-based approach was chosen to initiate
these studies as it typically provides a more direct and more
information-rich representation of the 3-dimensional features
necessary to reflect the enantiotopic differentiating capacity of
chiral catalysts.
MIF-based approaches29 are standard 3D-QSAR techniques

employed in drug design. MIF algorithms encode variation in
structure by positioning a probe atom and/or a point charge at
fixed grid points around each molecule of interest, and the

interaction energies with the probe are recorded at each grid
point. The dependent variable (typically a free energy of binding)
is then linearly correlated with the interaction energies for which
the coefficients are extracted from amultivariate linear regression
analysis, commonly by a partial least squares (PLS) method.
Although MIF approaches have enjoyed a long-standing history
of greater than 20 years in medicinal chemistry for the develop-
ment of drug candidates, only relatively recently (<8 years) have
they been applied to problems relating to asymmetric catalysis.
The most commonly employed MIF approach is comparative

molecular field analysis (CoMFA). The method uses a molecular
mechanics based force field to approximate van der Waals
interactions and the standard Coulombic potential is used for
electrostatic interactions for which the partial atomic charges are
determined at the desired level of theory.30 The appeal of this
method stems from its predictive capacity and ability to allow one
to visualize the developed model in terms of regions where field
variation (either electrostatic or steric in origin) within the
data set leads to a change in the dependent variable. In the field
of asymmetric catalysis, this method was first applied in the
analysis of the Diels�Alder reaction between cyclopentadiene
and a 3-vinyloxazolidin-2-one using copper(II) Lewis acids
with differing bisoxazoline and phosphinooxazoline ligands.31

Methods that incorporate semiempirical32 as well as ab initio
quantum mechanical33 interaction energies have also been
developed and have found application in analyzing asymmetric
diethylzinc additions using varying chiral amino alcohols34 as
well as asymmetric lithiation using varying chiral sparteine
surrogates.33

Two seminal reports employing CoMFA in the context
of PTC involved the asymmetric alkylation of a protected glycine
imine tert-butyl ester using different catalyst systems (Scheme 1).35

In the first report,35a a model was developed employing varying
cinchona alkaloid derived catalysts. In the second report,35b a
model was generated for the same reaction while using
different catalyst scaffolds developed by Lygo and co-
workers.36 The contributions of steric and electrostatic inter-
actions to the variation in enantioselectivity were found to be
roughly equivalent but the implications of electrostatic inter-
actions were not discussed in detail in these reports, which are
considered to be the predominate forces responsible for the
ion-pair interaction strength.37 Despite these important con-
tributions, ambiguity is still present as to the dependence of
electrostatic interactions on the observed enantioselectivity.
3. Objectives of This Study.The primary objectives of this study

were to develop quantitative structure�activity and �selectivity
relationships of quaternary ammonium ion asymmetric phase-trans-
fer catalysts. These objectives were addressed in three stages of
investigation: (1) the synthesis of a large number of diverse
quaternary ammonium salts with variable physical properties;
(2) accumulation of an internally consistent data set by evalua-
tion of the catalysts ability to promote an enantioselective enolate
alkylation; and (3) development of QSARs to correlate changes
in catalyst structure to the observed rate and enantioselectivity of
alkylation. The first two objectives were described in the
accompanying paper.11 The last objective was motivated by a
number of interrelated queries. For example, would a QSAR
approach generate testable hypotheses about the origin of rate
and selectivity of the catalysts? If so, would these hypotheses be
consistent or inconsistent with qualitative observations for other
PTC enolate alkylations? Would a multivariate QSAR reveal any
fundamentally important structural features inherent in desirable
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catalysts? Described herein are the development and analysis of
QSAR models for the enantioselectivity and activity of the
quaternary ammonium ion phase-transfer catalysts reported in
the accompanying paper (DOI: 10.1021/jo2005445). The pre-
ceding questions are addressed throughout the Discussion as well
as the Conclusion.
Before proceeding further, it must be stressed that we are well

aware that the reaction chosen for this study can be performed
highly enantioselectively with well-developed catalyst systems.38

That success notwithstanding, the observation of high selectivity
does not belie an understanding of the origin of such selectivity.
For these reasons, the objective of this study, in the context of
enantioselectivity, was not to develop catalysts for which the pre-
parative utility is competitive with current systems; rather, the goal
was to formulate meaningful structure�selectivity relationships
employing a catalyst scaffold that is modifiable with respect to the
steric and electrostatic environment circumscribing a quaternary,
stereogenic nitrogen atom (Scheme 1).39 If successful in generating
meaningful relationships, these principles may serve as potential
design criteria for the rational development of catalytic, enantio-
selective systems for which APTC variants do not exist.

’COMPUTATIONAL METHODS

1. Conformations of Catalysts for QSAR.The choice of catalyst
conformation is relevant for descriptors that are conformer-dependent
including principle moment of inertia, dipole, surface area, and the
spatial distribution of the interaction energies in the CoMFA analysis.
Some ambiguity arises when considering the appropriate ring-flip
geometry for each of the catalysts employed in this study, and thus, a
conformational analysis proved necessary. Minimum conformers for
each catalyst were generated using the MMFF force field and a Monte
Carlo based conformation search through the use of an annealing
algorithm as implemented in Spartan ’08 v1.2.0.40 To ensure that the
MMFF conformers were converging to reasonably stable minima, full
geometry optimizations for representative catalysts were carried out at
the B3LYP/6-31G(d) level of theory for each ring-flip conformer
obtained from the MMFF conformation distribution analysis which
resulted in three stable local minima using the MMFF force field.
Gratifyingly, none of the three optimizations changed the ring-flip
conformations identified by the MMFF force field. Moreover, the local
minima maintained the same relative energies, validating the use of the
MMFF conformers (see the Supporting Information). Additionally,
single point energies were determined including and excluding solvation

(SM841 solvation model) in the absence of a counterion; again, the
energetic ordering of the conformers was equivalent.

The lowest energy conformers of the isolated cations may not
accurately reflect the major reactive conformation for the ammonium
ion in the reaction medium. To address this deficiency, CoMFA analyses
were performed on multiple conformer libraries with varying scaffold
geometries obtained from theMMFFminimizations. The consequences
of each developed model will be addressed in the Results.
2. Enantioselectivity Model Development. Models for en-

antioselectivity were generated using CoMFA to generate the interac-
tion energies and the method of PLS was used for the regression analysis as
implemented in SYBYL-X 1.1.42 All developed PLS models for enantio-
selectivity include five components (latent variables). The dependent variable
was represented as a free energy term, �ΔG/RT = ln (R/S), because it is
expressed as a linear combination of energy terms in the PLS model. A full
table of the enantioselectivity data is provided in the Supporting Informa-
tion. The observed er range spans from 36:64 to 81:19 (S:R). Although the
enantioselectivities observed in this investigation fall short of being synthetically
useful, the range (1.2 kcal) has allowed for meaningful conclusions to be drawn
from the models developed herein which, as will be revealed in the Results and
Discussion sections, are consistent with qualitative observations.43

The electrostatic fields were calculated from the partial atomic
charges on all of the atoms. During preliminary studies, different partial
charge methods were investigated including MMFF, Gasteiger�Marsili,
and semiempirical methods (AM1, MNDO, and PM3). Models using
MNDO charges generally provided better correlations. CoMFA models
developed from semiempirical based charges have been demonstrated to
provide consistently more predictive models than models developed
from partial equalization of orbital electronegativity (PEOE, Gasteiger)
and molecular mechanics based methods.44 Thus, all of the remaining
discussion of CoMFA model development will have incorporated
MNDO ESP-based partial atomic charges as determined from single-
point calculations on the MMFF conformers.

An oftentimes frustrating requirement in performing aMIF analysis is
that the molecules should be aligned in a rational manner. Ideally, the
molecules are aligned such that the amount of variation in the fields that
can account for the variation in the dependent variable is maximized
while the amount of variation in the fields that cannot account for the
variation in the dependent variable is minimized. Frequently, the proper
alignment scheme necessary to achieve this ideal is not apparent, and
thus, multiple alignments are investigated. Alignment-independent
methods have been developed to address this deficiency,34d,45 although
some of the information is inevitably lost in the process whether it
belongs to signal or noise.

The rigidity of the scaffold led to a relatively straightforward decision
on how to align the molecules in an effort to minimize the variation in

Scheme 1
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their fields (maximize the ratio of variation accountable versus variation
that is unaccountable). The structures were aligned employing a simple
rms rigid-body alignment. The common substructure used for the
alignment is represented by the nine atoms that make up the core
5�5�5 ring scaffold. An example of an alignment for one of the
conformation libraries (see the Results) is illustrated (Figure 1).

The electrostatic and van der Waals energies were calculated using
two separate methods: Tripos Standard and Indicator field46 classes.
Under the Tripos Standard field method, the energies at each lattice
point are evaluated from the Lennard-Jones (LJ) (6�12) (van der
Waals) and the Coulombic potentials (electrostatic). Cutoff energies are
applied so that energies are not evaluated within the van der Waals
surface of the atoms where the energy would approach unreasonably
high numbers that are not fit for comparison. Under the indicator field
method, grid points are assigned as having either the preassigned cutoff
value or zero. If the energy is calculated (by the LJ or Coulomb
potentials) to be above the cutoff value, the energy at that grid point
is set to the cutoff value. If the energy is calculated to be below the cutoff
value, the energy at that grid point is set to zero. An advantage to the
indicator field method is that only grid points of intermediate energy are
selected which has a tendency to reduce model noise.35b

The resultant CoMFAmodels were further refined by placing weights
on grid points that were more pertinent to the model through the region
focusing technique as implemented in Sybyl-X 1.1. The grid points were
weighted by the discriminate power option which weights each grid
point by its contribution to the variation in the components of the
model. This effectively enhances grid points with larger contributions
while attenuating grid points that are less pertinent to the model. The
exponent that gauges the steepness of the applied weights was varied
between 0.2 and 0.8. Application of this region focusing procedure was
carried out iteratively until no improvement in the q2LOO was observed.
3. Catalyst Activity Model Development. 3.1. Descriptors. A

molecule can be characterized in an infinite number of ways. Because
many descriptions of a molecule are neither a physical nor a chemical
molecular property, the term “descriptor” is preferred over “property” to
relate a calculated numerical characterization of a molecule for the
purposes of a QSAR study. For the remainder of this report, the term
“descriptor”will be used exclusively for that purpose. The computational
package Molecular Operating Environment (MOE) was chosen for this
study.47 The MOE computational package contains 319 descriptors
ranging from the most simple (1-D) atom counts (e.g., number of

carbons) to complex (3-D) surface area and volume descriptors (e.g.,
amphiphilic moment), and all were included in this analysis.48

Many studies suggest that the solubility of the quaternary ammonium
ion in the organic phase is an important catalyst structural feature (vide
supra).17 To address thermodynamic solubilities, a variety of solvation
parameters were included in the analysis, connectivity dependent but
conformation independent methods (2D) and conformation dependent
DFT methods (3D).49 Solvation energies were determined by the SM8
solvation model (B3LYP/6-31þG(d)) for each catalyst in water and
benzene.41,50

Particular emphasis was placed on addressing ammonium accessi-
bility and polarizability in a quantitative fashion. Therefore, a number of
customized quaternary ammonium ion descriptors were developed on
the basis of the accessibility of the R carbon(s) of the ammonium ion
(represented in terms of solvent accessible surface area (A2)) with and
without various charge weights. These will be discussed in detail in a
following section. In addition, 543 surface area and charge density
descriptors were included.51 Similarly, the overall polarizabilities (and
hyperpolarizabilites) of each quaternary ammonium ion were calculated
quantum mechanically,52 and 50 HSAB and inductive descriptors were
included.53 In total, 1102 descriptors were compiled.

3.2. Data Manipulation and Statistical Methods. The kinetic data
reported in the previous paper (DOI: 10.1021/jo2005445) were
transformed into data suitable for QSAR by taking the logarithm of
the ratio of the observed half-life relative to the half-life of the back-
ground reaction.9 Initial descriptor evaluation was conducted utilizing a
genetic algorithm (GA)54 in combination with multiple linear regression
(MLR) as a preliminary search for descriptors and pairwise combina-
tions thereof (e.g., solubility þ polarizability) that account for the
greatest amount of variation in the data. Each evolution was allowed
to run for 50000 generations or until no change was observed over 1000
generations. During evolution, the “quality” of models was evaluated by
comparison of lack of fit.55 Final models were analyzed by internal and
external validation in the same manner as in the CoMFA procedure
(vide infra). The linear models were evaluated for coefficient of
determination (R2), root mean squared error (RMSE), and fit (F) and
will be discussed on a per-model basis. The descriptors utilized for
developing a model for catalyst activity are intrinsically less dependent
on conformation (lower dimension) thanMIF approaches; nonetheless,
the same conformations, charges, and alignment scheme were utilized as
in the CoMFA model. Molecules included in the rate data that do not

Figure 1. Rigid rms alignment for a representative conformation library (101 catalysts) from twoperspectives. The core 5�5�5 scaffold is highlighted in yellow.
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share the nine-carbon scaffold were rigidly aligned by superposition of
the four ammonium R carbons.56

4. Model Validation. The predictive capacity of the models was
assessed through internal and external cross-validation.57 The internal
cross-validation was performed employing the leave-one-out (LOO)
and leave-multiple-out (LMO) cross-validation methods. The q2LMO is
subject to variation, especially for smaller training and prediction set
splits. Thus, 100 LMO cross-validation runs were performed, and the
corresponding q2LMO is reported as the average over the 100 runs.
External validation was performed upon the judicious division of the
entire data set into training and test sets.

The model robustness was assessed through y-scrambling analysis.58

The dependent variable data were completely scrambled such that each
half-life or enantioselectivity value is paired up with the incorrect set of
descriptors that are calculated for a particular catalyst. This process was
performed 100 times, and the average R2 and q2LOO are reported.

’RESULTS

The model development for enantioselectivity and rate in-
volved fundamentally different approaches and will be presented
and discussed separately with the enantioselectivity model
development being presented first. The CoMFA modeling
required multiple stages of development. The first stage involved
the choice of conformers to use to represent each catalyst.
Preliminary CoMFA modeling was then performed on each
conformer library to obtain knowledge on the optimal represen-
tations of the catalysts for which the greatest variation in
selectivity may be explained by the variation in their fields. Since
both the rate and enantioselectivity models include conforma-
tion-dependent descriptors, the conformations identified from
the preliminary CoMFA modeling may be used for the model
development for catalyst activity. After the ideal conformational
representations for each catalyst was established from prelimin-
ary CoMFA modeling, the different CoMFA parameters (cutoff
energies, field types, dielectric, etc.) were explored on the optimal
conformer library to generate the best models as determined
from internal cross-validation methods.

As may be gathered from the information that will follow, the
results of the enantioselectivity model development revealed that
(1) a statistically significant CoMFA model could be developed
with this data set given the appropriate conformational repre-
sentations, (2) these representations may provide clues as to the
stereochemical course of the reaction, and (3) the preference of
either configuration of the product may have both steric and
electrostatic components.
1. Enantioselectivity Model Development. 1.1. Establish-

ing Catalyst Conformations. This stage often represents a sig-
nificant challenge for 3-D QSAR development, and various
approaches have been adopted.59 The catalysts studied herein
have relatively few degrees of freedom at ambient temperature
(within the scaffold) allowing for a relatively unambiguous
conformational investigation. The most significant conforma-
tional differences are those represented as the “up” and “dn”
conformers (Table 1). The preference for ring a to be in the
“down” conformation is large enough such that the “up” con-
former for this ring need not be considered.60 The preference for
either the up or dn conformation as shown is primarily a function
of the identities of the R1 and R2 substituents and the libraries in
Table 1 (libraries A�E) are organized as such. A first approx-
imation of reasonable conformations was the global minimum
for each catalyst (library A, Table 1).61 The geometry optimiza-
tion for each catalyst was carried out in the absence of a

counterion, and thus, the probability with which they represent
active conformations is uncertain. Hence, alternative conforma-
tional representations and different combinations thereof were
investigated. Taking into consideration the minimal energy
difference between the “up” and “dn” conformers,61 two addi-
tional conformer libraries were generated, one with all of the
catalysts in the “dn” conformation (library B) and another with
all of the catalysts in the “up” conformation (library C). The
investigation of librariesD and E only became apparent after the
initial CoMFA modeling was carried out and will be described in
that order.

CoMFA modeling of the enantioselectivity was carried out
using a limited number of cutoff energy combinations (15 or 30
kcal/mol) for both electrostatic and steric fields of standard or
indicator field types. An example of a rigid body alignment is
illustrated in Figure 1 (conformer library D). A condensed
summary of these results in terms of their coefficients of
determination (R2/q2LOO) is compiled in Table 2. Generally,
MNDO semiempirical-based ESP partial charges provided mod-
els with the highest correlations and are considered here in
calculating the electrostatic energies for the CoMFA analysis
(Table 2).62 The correlations for libraries A�C fall short of the
minimum for statistically significant predictions (q2LOO g 0.6).
Inspection of the residuals for the cross-validated runs (q2LOO)
revealed that catalysts with R2 = i-Pr and the most selective
catalysts (R2 = aryl, R4 = 3,5-bis(trifluoromethyl)benzyl) exhib-
ited the largest error in the predictions. Although library C does
contain one model with a q2LOO > 0.6, the result is quite sensitive
to the cutoff energies. Therefore, additional conformer libraries
were envisioned to address the low correlations.
Conformer library D (Table 1), in which R2 6¼ i-Pr or t-Bu,

possesses the up conformation, while catalysts with R2 = i-Pr or
t-Bu possess the dn conformation, was envisioned to address the
error in predictions for these catalysts. Additionally, library E,
which possesses the opposite ring-flip geometries with respect to

Table 1. Two Primary Conformational Representations of
Catalysts and Table of Libraries Representing Differing Com-
binations of Conformers Up and Dn Dependent on R1 and R2

R2/R1

library H/H H/Me Me/Me (i-Pr or t-Bu)/Me aryla/Me

Ab upc up dn dn dn

B dn dn dn dn dn

C up up up up up

D up up up dn up

E dn dn dn up up
a aryl = Ph, 1-naphthyl, mesityl. b Library containing differing conformer
combinations. cConformation of scaffold.
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library D, was investigated for purposes of comparison. Clearly,
conformer library D consistently provided the highest correla-
tions, with one model (30/15; indicator field) exhibiting a
correlation that may be statistically relevant (q2LOO > 0.778).
Interestingly, conformer library E (possessing conformers oppo-
site to that of D) provided the second highest correlations,
alluding to the importance of the conformational difference
between ring a and ring b of the catalysts at the extremes of
the er spectrum. The physical justification for the nature of the
conformations in library D will be addressed in the Discussion.
To attest to the statistical prevalence of the conformations

present in library D, 500 libraries of random (but unique)
distributions of up and dn conformers were generated. The
average q2LOO over the 500 runs was 0.409 with a maximum
q2LOO of 0.679. Reassuringly, the library with q2LOO = 0.679
contained conformers that closely mimicked that present in
library D in that the most selective catalysts (>75:25) possessed
the up conformation and the most selective in the opposite
direction (<38:62) possessed the dn conformation.
1.2. Internal Cross-validation. With conformations that lead

to models possessing statistically significant correlations
(represented by library D, Table 1), optimization of the various
CoMFA parameters (cutoff energies, dielectric, exponent of the
repulsive term in the Lennard-Jones potential, etc.) can be
carried out. Models incorporating both indicator and standard
field types were generated. Additionally, models incorporating
only the electrostatic or steric field, individually, were generated.
The assumption in the development of models with individual
fields is that all of the interaction responsible for the variation in
enantioselectivity is either electrostatic or steric in origin. Be-
cause overlap in these fields is possible (an interaction energy at a

grid point may be interpreted as steric but also be interpreted as
electrostatic and vice versa), analysis of models constructed from
individual fields may be informative.
In a typical CoMFA analysis, the descriptors significantly

outnumber the dependent variables, thus rigorous cross-valida-
tionmethods are necessary to substantiate the predictive capacity
of the models. Accordingly, different internal cross-validation
methods were carried out (q2LOO and q2LMO) in conjunction
with y-scrambling (which assesses model robustness) (Table 3).
The coefficients in the absence and in the presence of region
focusing are presented. The results clearly show that indicator
fields provide models that exhibit better overall correlations. The
y-scrambling results (low average R2 and q2 over 100 runs)
suggest that the models are statistically significant and are not
subject to chance correlation between the randomized enantio-
selectivities and the descriptors as the q2LOO,scramb for each
model is never a positive value and the corresponding R2scramb
values are minimal (R2scramb. < R2/2). Additionally, external
cross-validation has been performed through analysis of succes-
sive training and test set splits and further supports the sufficient
predictive capacity of the model (R2test,avg = 0.880).63

2. Catalyst Activity Model Development. Before under-
taking the development of a full QSAR for catalyst activity, two
important questions had to be addressed, namely, (1) what
descriptors are capable of reflecting ammonium ion accessibility,
and (2) is a multidimensional QSAR even necessary or is a one-
dimensional QSAR (LFER) possible? That is, would an acces-
sibility descriptor for an ammonium ion sufficiently account for
all of the variation in catalyst activity expressed in this data set?
2.1. Investigation of Ammonium Ion Accessibility. Previous

studies employing unfunctionalized ammonium ion catalysts

Table 2. CoMFA Modeling (R2/q2LOO) of Different Conformer Libraries from Table 1 with Varying Cutoff Energies and Field
Types (Standard and Indicator)

conformation librarya

cutoff energy (field type) A B C D E

30/30b Stdc 0.728d/0.547e 0.697/0.465 0.711/0.493 0.815/0.612 0.794/0.574

30/15 Std 0.729/0.551 0.700/0.481 0.711/0.485 0.814/0.598 0.794/0.586

15/30 Std 0.734/0.545 0.705/0.498 0.709/0.460 0.803/0.641 0.812/0.636

30/30 Indf 0.724/0.474 0.697/0.423 0.712/0.477 0.835/0.648 0.768/0.527

30/15 Ind 0.797/0.484 0.754/0.442 0.835/0.619 0.924/0.778 0.782/0.474

15/30 Ind 0.711/0.462 0.693/0.416 0.724/0.466 0.810/0.604 0.795/0.557
a See Table 1. b Steric cutoff energy (kcal/mol)/electrostatic cutoff energy (kcal/mol). c Standard Tripos field. d R2. e q2LOO.

f Indicator field.

Table 3. CoMFA Models with Optimal Cutoff Energies, Standard and Indicator Field Types, Internal Cross-Validation,
Y-Scrambling, with and without the Application of Region Focusing

field(s)_field type cutoff energya (steric/elec) R2 q2LOO q2LMO
b y-scrambc R2scramb y-scramb q2LOO,scram.

Bothd_STDe 35/5 0.846f/0.875g 0.669/0.738 0.615/0.705 0.383/0.338 �0.090/�0.050

elech_STDi 15/30 0.865j 0.543 0.506 0.413 �0.073

Sterick_STD 40 0.794/0.829 0.605/0.710 0.583/0.697 0.350/0.301 �0.103/�0.084

Both_INDl 20/5 0.940/0.944 0.794/0.890 0.760/0.878 0.579/0.429 �0.137/�0.096

elec_IND 10/5 0.923/0.887 0.750/0.799 0.705/0.766 0.594/0.388 �0.069/�0.030

steric_IND 25 0.840/0.867 0.648/0.749 0.627/0.732 0.431/0.378 �0.122/�0.102
a kcal/mol. b Leave 20% out cross-validation average over 100 runs. cAverage correlation coefficient over 100 completely scrambled iterations. dBoth =
electrostatic and steric fields. f R2 for model constructed from an unfocused region. g R2 for model constructed from a focused region. h Electrostatic
field only. i STD = standard Tripos field. jUnfocused region only. Region focusing did not improve the correlations. k Steric field only. l IND =
indicator field.
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showed that the PTC alkylation of deoxybenzoin and phenylaceto-
nitrile have similar catalyst structure�activity relationships.64 In
these cases, the catalyst activity is best rationalized in terms of
ammonium ion accessibility as defined by the parameter (q).20 The
following preliminary descriptor and model survey for ammo-
nium accessibility serves as an example description of the general
model development strategy utilized throughout this study.
Because q is only defined for linear quaternary ammonium ions,
it was essential to identify descriptors that reflect ammonium ion
accessibility that could be applied to all quaternary ammonium
ions. The initial approach sought to identify which single de-
scriptor used in this study is most highly correlated with q. If no
single descriptor could be identified that gave an exceptionally
high correlation (i.e., an LFER) then multidescriptor models
would be developed until a near-perfect fit could be realized (i.e.,
a QSAR).65 The possibility of an LFER (i.e., single descriptor)
was addressed by generating a database of all straight-chain
quaternary ammonium ions with 4�40 carbons (n = 715) and
then calculating the same descriptors for them as for the
ammonium ions investigated in this study. The solvent accessible
surface area of the ammonium ion center (NC4_SA) was the
descriptor most highly correlated with q (Figure 2a, R2 =
0.889).66 To improve the correlation, two component models
that accounted for all of the variance in q were generated using
a genetic algorithm in combination with multilinear regression
(GA-MLR) (Figure 2b). As shown in Figure 2c, the best
resultant model consisted of clogP(o/w) and the van der Waals
surface area bearing a partial positive charge (δþSA). Surpris-
ingly, this model does not contain NC4_SA despite the fact
that it appears with the highest frequency in the two-compo-
nent models (dark blue bar in Figure 2b). At this point in the
model development methodology schema nonlinear correla-
tions with q (the example “experimental data”) would be
sought out. It is observed that a parabolic fit of q as a function
of NC4_SA has a higher correlation coefficient than the linear
fit (see the gray bars in Figure 2a).
The QSAR model development strategy employed for the

catalyst activity data set is summarized below. The method
introduces no bias for any particular descriptor a priori and no
intervention by the practitioner is required during the model
screening process. To facilitate the survey and comparison of

large numbers of descriptors and models in short order, a genetic
algorithm was utilized. For example, in the investigation of q
described above, a GA-MLR allowed for the rapid comparison of
3 � 106 linear models from a population of 200 models over
15000 generations. The process consists of iterative application
of four basic steps: (1) inspection of linear single descriptor
correlations (Figure 2a), (2) screening of linear QSAR models
(combinations of 2 or more descriptors) by application of a GA-
MLR algorithm (follow Figure 2a to Figure 2b), (3) inspection of
both the frequency of descriptor inclusion in “good” models
(Figure 2b) as well as the resultant models (Figure 2c), and last,
(4) comparison of the higher dimensional models (more
descriptors) to the lower dimensional ones (follow Figure 2c
to Figure 2a). Typically, for the purposes of this study, the
descriptor/model surveys consisted of two to three iterations of
the process.
To summarize, the high correlation of q and the solvent accessible

surface area of the ammonium ion center (NC4_SA) confirms that
q is a good reflection of accessibility of the ammonium ion.
Ammonium ion accessibility is also highly correlated to a
combination of solubility and partial charge exposure, which
has important mechanistic implications (vide infra). Lastly, and
perhaps most importantly, nonlinear relationships often remain
hidden until manual inspection of the model and residuals.
Nonlinear correlations will be presented and discussed on a case
by case basis below.
2.1. Investigation of LFERs. The next questions to be addressed

were as follows: (1) Is a multidimensional QSAR necessary or
is a one-dimensional QSAR (LFER) possible? (2) Would an
ammonium ion accessibility descriptor sufficiently account for all
of the catalyst activity in this data set? As before (vide supra),
inspection of a correlation matrix of catalyst activity and each
descriptor initiated the analysis. In no case was a single descriptor
found that was highly correlated (R2 > 0.8) to catalyst activity.
However, it is useful to identify descriptors that exhibit the
strongest linear correlations to catalyst activity of the total pool
of descriptors investigated. A representative selection of single
descriptor correlations is summarized in Table 4 along with their
associated regression statistics (n = 102, R2, q2LOO, RMSE, and F).
The most highly, linearly correlated descriptors can be cate-

gorized into three groups, namely (1) those pertaining to

Figure 2. Summary of the descriptor and model screening strategy. (a) A comparison of a linear and nonlinear single descriptor model of q; NC4_SA =
the water accessible surface area of the ammonium R-carbons. (b) GA-MLR run terminated at 15000 generations. The frequency of inclusion of the 10
“best” descriptors in the 300 best models is shown (y-axis) versus the number of generations (x-axis). (c) Best two-descriptor model for q =�7.502�
6.03 � clogP(o/w) þ 5.27 � PEOE_VSA_POS.
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nonpolar surface area/volume, (2) polar surface area/volume,
and (3) electrostatic interactions. The three descriptors with the
highest positive linear correlations are polar volume, hydropho-
bic volume, and hydrophilic volume (vsurf_WP1, vsurf_D1, and
vsurf_W1 respectively). Similarly, the water-accessible surface
area (ASA) is correlated positively with catalyst activity. Many
descriptors related to catalyst polarity (electrostatic interactions)
were found to be negatively correlated to catalysts activity. Two
representative descriptors include the Politzer ionization poten-
tial (RA_2D_PIP2) and the minimum electrostatic potential
(elstat_min, most negative or electron repelling energy). Two
descriptors that are not correlated with catalyst activity are the
calculated octanol/water partition coefficient (clogP(o/w))

67 and
total polar surface area (TPSA).68,69 The high frequency of
correlation observed between multiple subdivided surface area/
volume descriptors was expected as these are useful in prediction
of pharmacokinetic properties.70 Similarly, interactions between
an ammonium catalyst and an anion are necessarily noncovalent;
thus electrostatic terms are chemically and physically justified.
Thus, prior to investigation of a multicomponent QSAR it was
established that no single descriptor could account for all of the
catalyst activities. The question therefore remained, how many
descriptors are necessary to account for the variation in catalyst
activity?
2.3. Multidimensional QSAR Analysis
2.3.1. Establishing an Upper Limit for the Number of

Descriptors per Model. It has been proposed that six descriptors
are required to model neutral solute behavior and seven are
required to model ionic solute behavior in a biphasic system.71

Multicomponent QSAR model development was initiated by
dividing the database into two sets of descriptors (3D and 2D)
and developing models with a variable number of components
(1�10). The 3D descriptor set performed slightly better than did
2D descriptor models with fewer than five components.55 When
more than five components were included, 3D and 2D models
exhibited similar performance. Inclusion of more than seven
descriptors in a model did not lead to a significantly better fit,
completely consistent with observations for many phase transfer
related processes.71 Therefore, it was decided to limit further
model development to combinations of seven descriptors or less.
The 2D descriptors that were most frequently included (i.e.,

“survived” the evolution) were (1) number of rotatable bonds,
(2) molar refractivity, (3) clogP(o/w), (4) molecular volume, and
(5) molecular weight as well as various descriptors for partial
charge distribution and electrostatic potential interaction energy.

The 3D descriptors that were included most frequently were
(1) molecular dipole, (2) cross-sectional area (XSA),72 (3)
ionization potential, and various descriptors encoding electro-
static potential interaction energies.51

2.3.2. Models with Descriptor Subsets. In addition to com-
paring 3D and 2D descriptor set models, comparison of models
derived from different descriptor classes is informative. Table 5 is
a summary of models with variable numbers of components
based on VolSurf,73 electrostatic surface area,51 charged surface
area,74 inductive,53 and SMR/SlogP_VSA descriptor classes. For

Table 4. Representative Summary of Descriptors Linearly Correlated to Catalyst Activity

descriptor description correlation R2a q2LOO
b RMSEc Fd

vsurf_D1 hydrophobic volume þ 0.413 0.400 1.17 74.41

vsurf_W1 hydrophilic volume þ 0.381 0.370 1.20 66.95

vsurf_WP1 polar volume þ 0.466 0.460 1.11 87.97

ASA accessible surface area þ 0.373 0.368 1.20 65.81

RA_2D_PIP2 Politzer ionization potential - 0.400 0.371 1.20 67.88

elstat_min minimum electrostatic potential - 0.366 0.337 1.21 57.73

Aq_Solv_E Aqueous solvation energy þ 0.419 0.402 1.16 74.22

clogP(o/w) Partition coefficient þ 0.221 0.185 1.34 29.00

TPSA Total polar surface area þ 0.070 0.045 1.47 9.50
a Square of the correlation coefficient. b Square of the leave-one-out cross-validated correlation coefficient. cRoot mean square error. d Fischer
number.

Table 5. Comparison ofModels Based on Various Descriptor
Classes

descriptor class no. of descriptors R2 q2LOO
a RMSEb Fc

inductive 2 0.461 0.412 1.15 43.23

4 0.583 0.543 1.01 34.65

5 0.613 0.537 0.98 31.07

6 0.635 0.552 0.95 28.07

7 0.648 0.564 0.93 25.23

δ( SA 2 0.483 0.458 1.09 46.16

4 0.561 0.524 1.00 30.93

5 0.591 0.546 0.97 27.70

6 0.618 0.562 0.94 25.60

7 0.642 0.569 0.91 24.07

volsurf 2 0.589 0.567 1.01 72.33

4 0.655 0.610 0.92 47.02

5 0.686 0.641 0.88 42.76

6 0.707 0.664 0.85 38.95

7 0.721 0.674 0.83 35.48

SMR & SlogP 2 0.541 0.518 1.06 59.55

4 0.671 0.651 0.90 50.57

5 0.703 0.666 0.86 46.35

6 0.726 0.685 0.82 42.84

7 0.746 0.692 0.79 40.32

electrostatic surface area 2 0.550 0.538 1.05 61.67

4 0.710 0.604 0.85 60.54

5 0.746 0.712 0.79 57.48

6 0.786 0.635 0.73 59.41

7 0.808 0.782 0.69 57.75
aAverage square of the correlation coefficient after leaving one data
point out. b Square of the leave-one-out cross-validated correlation coeffi-
cient. cFischer number.
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this data set, the lowest correlations were found with models
based solely on partial charge distribution (inductive or surface
area). None of the models based on inductive effects or partially
charged surface areas had R2 greater than 0.7. Also, in both of these
cases, as the number of descriptors in the model was increased the
variance in the data thatwas accounted for decreased at a greater rate
than for other descriptor sets. The VolSurf and SMR/SlogP
descriptor sets performed well, generating models with R2 > 0.7
and similar errors (RMSE and F). The electrostatic descriptor set
generated the best models with the smallest deviations.
Many of the models in Table 5 are quite good by QSAR

standards9 in that they exhibit a high fit of the experimental data,
small error, and a high data to descriptor ratio.75 Each of the most
successful descriptor sets share a common feature; the indepen-
dent variable inputs consist of descriptor values that are “binned”.
Binning76 descriptor values by surface area or volume is an
extremely useful QSAR method capable of separating out the
molecular surface area and volume properties responsible for an
observed effect from noise.9f,g The process is analogous to
compressing an image where the important contrasts are retained
and the unimportant discarded.
The disadvantage of such an analysis is that deconvoluting the

resultant property values and correlating them with a particular
structural change can be challenging. That is, the interpretability
of the resultant QSAR model is often difficult.
For this reason, a final series of models was sought that would

provide a higher degree of interpretability. Interestingly, clogP(o/w)
was not identified as a useful descriptor by randomly screening
and comparing linear models, which certainly warrants further
investigation.
2.4. Systematic Investigation of clogP and XSA
2.4.1. Comparison of clogP(o/w) and clogP(b/w). The rele-

vance of clogP(o/w) for the catalysts in this study was evaluated by
comparing the calculated octanol/water partition values77 to
calculated benzene/water partition values that are known to be
very accurate for charged organic solutes (Figure 3a).41 A
number of systematic deviations are immediately apparent. For
most of the data set, a good linear correlation is seen (blue circle,
81 of 102). However, even for these cases, there is significant
systematic deviation indicated by the slope of ∼0.6 (not 1.0),
which reflects the greater solvating ability of octanol than
benzene. Also, catalysts bearing strongly electron-withdrawing
R4 substituents (Figure 3a, red triangle, 18 of 102) make up
another group of catalysts with systematic deviation and are
significantly less lipophilic in the benzene/water system than an
octanol/water partition would predict. For catalysts bearing two
strongly electron-withdrawing substituents (blue diamond,
Figure 3a) the effect is multiplied. Ammonium ions with N-
methyl substituents showed similar deviation (orange square,
Figure 3a), but to a lesser extent. Taken together, these results
indicate that the dominant physical origin of the difference
between the two calculated values is an increased electrostatic
contribution to the partitioning of ammonium ions in benzene/
water in comparison to octanol/water.
Plotting catalyst activity versus clogP(b/w) partition reveals a

potential parabolic relationship (blue circle, Figure 3b). Roughly
75% of the data set conforms to this fit, but the remaining 25%
does not (red �). The ammonium ions whose activity deviated
the most from the parabolic fit were those with N-methyl groups
(e.g., cetylMe3N

þ), the parent cyclopenta[gh]pyrrolizidinium
ion (R1, R2 = H and no β-oxygen), and those containing a
β-hydroxy group (R1, R2, R3 = H). The fit indicates that a

maximum catalyst activity is observed when clogP(b/w) is be-
tween �3 and �1. Therefore, this partially parametrized para-
bolic fit was included in another round of model screening. The
effect of model screening in this way can be visualized as scalar
multiples of the partially parametrized parabolic fit (gray lines,
Figure 3b). To this end, the most successful descriptor sets and
singly, highly correlated descriptors were compiled (see Results
sections 2.3.1 and 2.3.2) and allowed to compete in another
round of evolution, inclusive of nonlinear descriptor operations
(e.g., square, inverse, log, etc.).
The best models resulted when either clogP(b/w) or XSA were

forcibly included and are summarized in Table 6. Overall, a
parabolic fitting of clogP(b/w) generated models with similar
performance as observed for log(XSA). Within the clogP(b/w)-
based models, the most frequently encountered descriptors were
those dealing with motion, specifically the standard dimensions
(std_dim_n)78 and principle moments of inertia (pmi). A variety
of partial charge descriptors, such as the surface area of the
ammonium ion and other subdivided surfaces were also included.
Most interestingly, the bestmodelwith three descriptorswas�XSA2þ
XSA. Overall, the clogP(b/w) models had a significantly decreased
RMSE, about half that of the XSA models, but the overall fit
decreased only slightly in all cases relative to the XSA models.

In general, it was discovered that taking the log of the cross-
sectional area (XSA) resulted in bettermodels than using the native
cross-sectional area. In these cases, the remaining descriptors were
almost exclusively composed of descriptors encoding electrostatic
interactions.51 The high correlation of models containing cross-
sectional area or the log of the cross sectional area provided the
impetus for a more detailed investigation of this descriptor.79

Table 6. Comparison of XSA, log(XSA), and clogP(b/w)
Models

dominanta descriptor descriptors R2 q2LOO
b RMSEc Fd

�aclogP(b/w)
2 þ bclogP(b/w) 2 0.564 0.539 0.44 63.90

3 0.635 0.626 0.40 56.76

4 0.702 0.690 0.36 57.03

5 0.734 0.718 0.34 53.10

6 0.779 0.754 0.31 55.86

7 0.791 0.765 0.302 50.79

XSA 2 0.646 0.627 0.90 90.46

3 0.688 0.667 0.85 72.19

4 0.723 0.690 0.80 63.29

5 0.759 0.721 0.75 60.36

6 0.780 0.750 0.71 56.03

7 0.803 0.772 0.68 54.77

log(XSA) 2 0.629 0.614 0.93 84.07

3 0.751 0.732 0.76 98.68

4 0.781 0.753 0.71 86.71

5 0.799 0.764 0.68 76.36

6 0.824 0.799 0.64 73.97

7 0.845 0.759 0.60 73.39
aHere, aclogP2 þ bclogP from the partially parametrized parabolic fit
above is treated as a single descriptor. b Square of the leave-one-out
cross-validated correlation coefficient. cRoot mean square error.
d Fischer number.
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The cross-sectional area descriptor has been developed speci-
fically to relate the surface activity of amphiphilic molecules.72

After correcting for conformational differences to resemble a
surface bound ammonium ion, it was found that cross-sectional
area alone was sufficient to account for most of the differences in
catalyst activity (Figure 4a). A nonlinear correlation with XSA
was observed, similar to the observed maximum for clogP(b/w)
partition coefficient (Figure 3b). In the case of XSA, the optimal
value for catalyst activity is between 80 and 100 Å2. Thus, the
model chosen for further analysis is (Figure 4b):

logðkrelÞ ¼ þ 0:079ð � 0:0189 � clogPðb=wÞ2 � 0:072

� clogPðb=wÞ þ 3:259Þ þ 0:833ð � 0:0004

� XSA2 þ 0:0824� XSA � 1:154Þ
� 0:46778 ð1Þ

Although higher regression coefficients and overall fits could be
obtained with more complicated models, the high correlation
(Figure 4b) with only two descriptors and high degree of physical
interpretability favors the use of this model.

’DISCUSSION

1. Catalyst Enantioselectivity. 1.1. Conformations from
CoMFA Modeling. As noted previously, the catalysts in this study
exhibit two primary conformational preferences manifested as
the up and dn conformers (Table 1). The distribution of the
conformers in a given library significantly impacts the integrity of
the CoMFA models as illustrated in Table 2. These conforma-
tional preferences in the CoMFA models necessitate further
analysis and physical justification.
The underlying hypothesis is that the preference for the

catalyst to exist in the up or dn conformation depends largely
on the face of the catalyst to which the enolate associates.
As illustrated in the accompanying paper (DOI: 10.1021/
jo2005445), the oxygen substituent at C(1) polarizes a larger
amount of positive potential to the face over ring a relative to the
face over ring b of the catalyst scaffold. Thus, association of the
enolate with the face over ring a would be expected with small
groups as the R2 substituent (Table 1). If R2 is isopropyl or tert-
butyl, it may be expected that the enolate would associate
preferentially with the face over ring b of the catalyst as less
positive potential is “screened” by a methyl group (at R1) relative

to the isopropyl or tert-butyl groups (at R2). Association with the
face over ring b would require the catalyst to exist in the dn
conformation to maximize exposed positive potential and hence
the electrostatic interaction. The conformational preference (dn
or up) for catalysts with R2 not equal to isopropyl or tert-butyl
does not have a strong electrostatic component and may
primarily be dictated by the energy intrinsic to the scaffold
geometry. These energy differences vary depending on R1, but
it is not expected to greatly influence the enantioselectivity.
When taking the reaction medium into consideration, it is

unlikely that the strength of the interaction with the enolate
(when R2 is not equal to isopropyl or tert-butyl) would be
affected by the conformation of ring b significantly if the catalyst
is in the toluene layer. On the other hand, if the catalyst is
present in the aqueous or interfacial layer, it is probable that the
catalyst would prefer to adopt the dn conformation to enable
partial solvation with water molecules. However, of primary
concern is the thermodynamic preference of the ammonium
enolate in the toluene layer as that is primarily the medium
where the intrinsic alkylation step (and also the stereodetermin-
ing step) is believed to occur.
The complication of unknown reactive conformations may

be alleviated by including a distribution of both conformers
weighted by their corresponding energies. However, this ap-
proach would require modeling in the presence of an anion as
the energies would not reflect the desired Boltzmann distribu-
tions in the absence of an anion (since the dn conformation
would be largely preferred if the enolate is associating with the
face over ring b which is presumed to be occurring for catalysts
with R2 = i-Pr, t-Bu), which would be outside the computational
rigor intended for this study.
1.2. Contour Maps. The CoMFA models may be physically

interpreted in the form of contours encompassing the catalysts.
The most common method for illustrating the contours are as
products of the standard deviation of the interaction action
energies and the coefficients in the PLS model at each grid point
(StDev*Coeff). This product represents regions where and how
the variation in the interaction energies can be explained by the
variation in the enantioselectivity. The contours produced can be
physically interpreted as spatial regions encompassing the cata-
lyst where an increase or decrease in steric bulk (green for
increase, yellow for decrease) and positive charge (blue for
increase, red for decrease) leads to an increase and decrease in
enantioselectivity respectively. Both the steric and electrostatic

Figure 3. (a) Comparison of thermodynamic ammonium ion partitioning values; clogP(o/w) and clogP(b/w). (b) Possible parabolic relationship between
catalyst activity and clogP(b/w).
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contour maps derived from indicator fields (boxed model in
Table 3) are illustrated below (Figures 5 and 6). It is noteworthy
that contour maps from models derived from Tripos standard
fields display information that is similar to the contour maps
derived from indicator-based fields below.
1.2.1. Steric Contour Maps. Upon inspection of the steric

contour maps (Figure 5), the relationship between the substitu-
tion pattern and the contours becomes immediately apparent. A
catalyst among the most selective is illustrated to serve as a
template for interpreting how the contours are manifested. Two
3-D representations of different perspectives are illustrated for
gauging relative depth. The location of the contours will be
discussed with respect to the perspective of the left illustration in
which the 5�5�5 scaffold is presented. The green contour on
the front of ring b overlaps with the methyl group which is
necessary for higher selectivity. The data is consistent with the
hypothesis that this methyl group is necessary to shield the right
front of ring b from anion association. The green contours
overlapping with the substituents at the 3 and 5 positions of
the phenyl ring of the benzyl group attached to the nitrogen atom
are consistent with increased enantioselectivity with substitution
at those positions. Only tert-butyl and trifluoromethyl groups
were explored with latter groups bestowing greater enantioselec-
tivity. The green contour in the back, overlapping with the phenyl
ring of the benzyl group attached to the oxygen atom, is an
indirect indicator of the presence of a non-hydrogen group at the
R2 substituent. If the R2 substituent is hydrogen, the benzyl
group attached to the oxygen atom occupies the region of space

after rotation of ∼90� counterclockwise about the O�CH2Ph
bond with respect to the conformation adopted by the corre-
sponding catalyst with R2 6¼ hydrogen.56 All catalysts possessing
a hydrogen atom at R2 exhibit poor enantioselectivity in which
case the phenyl ring would not overlap with the green contour of
interest. The yellow contours surrounding the group attached to
the nitrogen atom (R4) reflect substitution patterns (1-naphthyl,
hexyl, and 9-anthracenyl groups) unfavorable for enantioselec-
tivity. The large yellow contour over ring A may reflect both
unfavorable interactions with the 9-anthracenyl substituent as
well as bulky aliphatic groups at the R2 position (i-Pr and t-Bu).
The effect of this steric contour will be further rationalized in
conjunction with the electrostatic contours as discussed below.
1.2.2. Electrostatic Contour Maps. Although the steric con-

tours enabled the rationalization of the direct influence of specific
substitution patterns, the electrostatic contours tend to reveal
more indirect information relating to stereocontrolling features
including differential binding affinities. After eliminating the grid
points with minimal field variation (1.3 kcal/mol column
filtering), only two primary contours remain. The presence of
a large blue contour over ring a suggests the potential for this
region to serve as a reasonable binding site for the reactive
enolate. This conclusion is consistent with the fact that the largest
degree of positive potential is localized over this ring in accor-
dance with electrostatic potential (ESP) maps determined using
ab initio theory.80 The blue contour may additionally reflect the
enantioselectivity enhancing effects of an aryl group at the R1

position as the quadrupole moment of arenes results in a region

Figure 5. Steric contour maps from two different perspectives. Green contours indicate regions where increased steric bulk leads to increased
enantioselectivity, while yellow contours indicate regions where decreased steric bulk leads to increased enantioselectivity.

Figure 4. (a) Comparison of a parabolic and bilinear correlation between catalyst activity and catalyst cross-sectional area. (b) Plot of the predicted
catalyst activity versus the observed catalyst activity for a double parabolic QSAR model with clogP(b/w) and XSA.
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of positive potential along the circumference of the ring and may
serve as an indicator for the regression analysis.81 The ESP partial
charges should reflect this region of increased positive potential
(relative to catalysts with R2 6¼ arene) which is thus detected by
the indicator fields. The red contour is coincident with a
trifluoromethyl group on the right side and is consonant with
the enantioselectivity enhancing effects of this group in conjunc-
tion with previously mentioned substitution requirements ne-
cessary for enantioselectivity. Interestingly, a red contour does
not overlap with the trifluoromethyl group on the left-hand side,
which may be a result of the nearby blue contour and it having a
larger contribution to themodel. The absence of a contour in this
position may suggest the undesirable negative electrostatic
potential and that the enantioselectivity might be enhanced in
its absence. These two electrostatic contours may also reveal an
intrinsic dipole preference of the catalyst for enantioselectivity.
The yellow steric contour on the front of ring a in Figure 5 is
complementary to the electrostatic contours in that increased
positive potential and decreased steric potential should lead to a
more favorable binding interaction with an associating anion.
The combined effects of the steric and electrostatic contours are
supportive of the conclusion that the most favorable binding site
for increased enantioselectivity is that on the convex side of ring a
for an associating enolate.
1.3. Stereochemical Analysis of QSSRModel.The information

revealed by considering both the steric and electrostatic fields
allows some generalizations to be drawn regarding themodewith
which the enolate should associate with the catalyst that leads to
increased enantioselectivity. The blue contour coincident with
the R2 group (Figure 6), the green contour coincident with the
R1 substituent (Figure 5), and the large yellow contour on the
front of ring a of the catalyst (Figure 5) are all consistent with the
preferred region of the catalyst for association that leads to
increased enantioselectivity to be the front of ring a of the catalyst
scaffold. The red contour (Figure 6) may enforce a preferred
dipole orientation of the catalyst for aligning the enolate.
The observed enantioselectivity may be explained by consid-

ering one of two limiting scenarios:82 (1) the binding of the
enolate to the catalyst is completely selective for one of the four
faces of the imaginary tetrahedron inscribing the ammonium
nitrogen and the enantioselectivity is directly related to the
capacity of the face of the catalyst in question to differentiate
the Re or Si faces of the enolate or (2) the capacity with which the
catalyst differentiates the Re or Si faces of the enolate with respect
to the faces of the ammonium ion is maximal (each face selects
either Re or Si completely), and the enantioselectivity is directly
related to the binding selectivity of the enolate to one of the four
faces of the catalyst. A combination of (1) and (2) is likely

operative; however, the observation that bulky aliphatic groups at
R2 result in a reversal in enantioselectivity suggests that a large
portion of the observed enantioselectivity is governed by limiting
scenario (2).
Assuming that limiting scenario (2) is primarily operative,

some generalizations about relative binding affinities and en-
antioselectivity can be drawn. Both the electrostatic and steric
contours are then consistent with the relative association pre-
ferences outlined in Figure 7. Because of the polarization effects
of the oxygen substituent, association mode (A) is preferred in
structures of type 5 and to a lesser extent for 1, 2, and 3 (preferred
pathway is indicated by a larger arrow). When the face over ring a
is significantly sterically hindered, as in structures of type 4,
association mode (B) is preferred even though the electrostatic
preference favors association mode (A). The ordering outlined
in Figure 7 is most consistent with the enantiomeric ratios
when R4 is significantly electron withdrawing such as a bis-
(trifluoromethyl)phenyl group. Presumably, this group serves to
create a stronger electrostatic interaction (decreased separation
distance) with the enolate which enhances the steric influence of
the R1 and R2 substituents with respect to catalysts with less
electron-withdrawing groups at R4. The stronger interaction for
catalysts with R2 = aryl is not likely a consequence of increased
steric or electrostatic (with respect to the electrostatic potential
associated with the ammonium nitrogen atom) interactions but
may be attributed to the intervention of π�π interactions. An
alternative to this analysis (limiting scenario (1)), would be that
the erosion of enantioselectivity may be attributed to decreased
enantiotopic differentiation of the faces of ring a or ring b of the

Figure 6. Electrostatic contour maps from two different perspectives. Blue contours indicate regions where increased positive charge leads to increased
enantioselectivity, while red contours indicate regions where decreased positive charge (increased negative charge) leads to increased enantioselectivity.

Figure 7. Association preferences for the enolate (En�) as a function of
the R1 and R2 groups.
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catalyst for the Re and Si faces of the enolate which lends to a
more challenging stereochemical rationalization.
Although the highest enantioselectivity observed in this report

(er = 81:19) does not currently allow for the development of a
well-defined stereochemical model for this catalyst system, the
contour maps do allow the generation of qualitative assessments
of how to increase the enantioselectivity further by introducing
substituents that render the interactions noted above even more
favorable. The model may also be used to make semiquantitative
predictions regarding the extent of enantioselectivity to which
certain substituents may provide. While such extrapolation can
be susceptible to erroneous predictions, some confidence may
be placed in the predictions if the catalysts identified to be more
selective are proximal to the structural and dependent variable
domain of the training set. For example, this model would
be incapable of predicting enantioselectivities imparted by
cinchona derived quaternary ammonium ions and any catalysts
that furnish enantioselectivities significantly greater than 81:19.
1.4. Summary of QSSR Analysis of Enanioselectivity. The

observed variation in enantioselectivity could be explained by
analysis of the electrostatic and steric environments of the
catalysts through CoMFA modeling. The contour maps
(graphical representations of the model) may be interpreted as
relating to the association preferences of the enolate for the
catalyst. The relationship is more evident when the electrostatic
attraction is strongest which is the case when R4 is a bis-
(trifluoromethyl)phenyl group (Figure 7). This attraction en-
hances the influence (whether it be steric or electrostatic) of the
R1 and R2 substituents. The determination of catalyst 3 enolate
interaction energies through ab initio molecular modeling might
reveal a more convincing quantitative relationship between er
and the relative association strengths of the two most exposed
catalyst faces but is beyond the scope of this report.
The results from the study on enantioselectivity suggest some

design considerations for designing future catalysts for this
system and may be extrapolated to underdeveloped APTC
systems. The design criteria can be broken into steric and
electrostatic (which is further decomposed in a truncated multi-
pole expansion).
Electrostatic:
• monopole: not variable
• dipole: enforced by strongly polarizing groups proximal to
the quaternary nitrogen (e.g., R4 = bis(trifluoromethyl)phenyl
group; β-alkoxy group)

• quadrupole (locally):83 may comprise of π�π interactions
in the context of the system studied in this investigation
(e.g., R2 = aryl)

Steric:
• addition of steric bulk for three of the four faces of (R1 =
Me)

• removal of steric bulk for one of the four faces (R2 6¼ i-Pr,
t-Bu)

Either electrostatic or steric interactions may be predominant
depending on the nature of the structural variation in the training
set. For the data set investigated in this study, the contributions of
electrostatic and steric interactions to the variation in the
observed enantioselectivity are 45% and 55%, respectively. All
of the aforementioned principles are necessary to account for the
relatively elevated enantioselectivities imparted by catalysts of
type 5 in Figure 7. Although these principles might seem
apparent from chemical intuition and a moderate understanding

of intermolecular interactions, the application of this analysis is
rarely encountered in APTC catalyst design, particularly for all
the aforementioned interactions.
2. Catalyst Activity. At the final stage of any QSAR endeavor,

the same fundamental questions must be answered, namely, do
the statistically derived relationships have anymeaning, and, if so,
what? Given the statistical labyrinth that defines the modus
operandi of QSAR analyses, the pitfall of associating correlation
with causation is often encountered.84,85 One of the most
common sources of this problem is to search for trends in large
data sets while ignoring trends in the chemotype subpopulations.86

For this reason, the following discussion is divided into two
sections, one that involves the entire data set and the other that
compares library subpopulations with common chemotypes.
The two descriptor types common to most good models for this
data set were molecular cross-sectional areas and those derived
from electrostatic potential maps. The differences in electrostatic
potential maps of the catalysts were discussed in detail in the
preceding paper.80 The most intuitive model developed was
based on two descriptors, namely XSA and clogP(b/w). Therefore,
the following discussion will focus on the differences and physical
interpretation of the cross-sectional areas and clogP(b/w) of the
catalysts.
Prior to a detailed discussion and interpretation of the QSAR

results, a brief review of the data collected would be helpful. The
previous paper reported, in detail, the manner in which the data
for this study was collected (Scheme 2).11 Most importantly, the
catalyst activity data set was collected at a single stir-rate
(1600, rpm) under a standard set of conditions. Care was taken
to collect data under conditions such that the reaction is stir rate
dependent and with a highly active nucleophile (an enolate
alkylation). Therefore, under no circumstances should these data be
interpreted to represent a rate-limiting alkylation step.87

2.1. clogP. Because the basis of phase-transfer catalysis is
extraction of a hydrophilic substrate anion into a lipophilic
organic phase, a correlation of catalyst activity with organic phase
solubility is perhaps not surprising. Indeed, it has long been
appreciated that catalyst solubility is an important factor to
consider. Early reports on PTC indicated that the catalyst activity
was correlated to the partition coefficient P, most commonly
represented as the ratio of the organic and aqueous phase concen-
trations (Figure 8).17,88 Also, the number of carbons in a catalyst has
been proposed as a useful predictor of catalyst activity.18,89 Studies in
medicinal chemistry have shown time and time again that the
contribution of a methylene unit to clogP(o/w) is additive for
homologous series like quaternary ammonium ions.4c In other
words, phase-transfer catalyst activity is correlated to the number
of carbons because clogP is linearly related to the number of
carbons in an unfunctionalized ammonium ion.90

Partition coefficients have been thoroughly studied from both
a thermodynamic and kinetic perspective because they facilitate
the description (and prediction) of the pharmacokinetic

Scheme 2
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behavior of drugs. Thermodynamically, the distribution of a
solute between two immiscible phases can be represented as the
difference in the solvation energy of the solute in the two phases
(Figure 8).91 BecauseΔG =�RT ln(K), this energy difference is
proportional to log P and the coefficient c contains the constant R
as well as the absolute temperature, T. Interpretation of PTC in
terms of a static, thermodynamic partition coefficient has been
done and leads to conclusions such as “the effectiveness of a
phase-transfer catalyst depends mainly on its organophilicity.”92

Although true, in part, a number of drawbacks to this representa-
tion and subsequent interpretation are readily apparent. For exam-
ple, a thermodynamic explanation does not necessarily indicate why
the correlation is observed. The typical interpretation is that as the
lipophilicity of the catalyst increases, the concentration of the active
substrate in the organic phase increases with it. Considered in the
context of catalysis, where the observed activity is necessarily a
balance of multiple rates, this interpretation is unsettling because
it leads to the incorrect conclusion that the best catalysts should
exhibit both infinite organic solubility and water insolubility.
Although a kinetic interpretation of the partition coefficient is

much less common in the PTC literature, it is far more valuable
(Figure 9) for understanding the catalytic cycle of PTC.93 Thus,
the thermodynamic partition coefficient is expressed as the ratio
of the forward (k1) and reverse (k2) rates of the catalyst
traversing the interfacial region.94 This type of analysis allows
the application of transition-state theory and is known to be an
accurate representation, even for ionic solutes (e.g., ammonium
ions).95 In this interpretation, the two solvated states (organic or
aqueous) are energeticwells and should be observable intermediates
on the catalytic cycle. Also, a catalyst traversing the interphase is in a
third state, namely a transition state, which has an infinitesimal
population during the catalytic cycle. Or more succinctly, this
interpretation is consistent with the extraction mechanism of
PTC.96

A number of questions can be quantitatively addressed
following this line of reasoning. For example, theoretically, at
what logP should the greatest catalytic rate of phase transfer (sum
of k1 and k2) be observed? Application of the Hammond
postulate reveals that, theoretically, the greatest rate of phase
transfer should be observed when k1 = k2, corresponding to a
partition coefficient of 1 (logP = 0). That is, a maximumPTC rate
should be observed when the transfer of the catalyst is energe-
tically neutral, corresponding to a perfectly symmetric transition
state (neither early nor late). What is observed in this data
set is a maximum catalyst activity when the calculated
clogP(b/w) = �1.90 (Figure 3) out of a range from �15 to 5.
Given the known high precision of the SM8 solvation model, the
deviation from the theoretical is most likely the result of
calculating clogP with water as the aqueous phase, rather than
the strong electrolyte solution (50% KOH in water) present
under the reaction conditions. There are a number of other less
likely possibilities and they will not be elaborated here.97

Thus, we conclude that that clogP(org/aq) serves as a useful
predictor of phase transfer catalyst activity because it can be
interpreted kinetically. It can then readily be inferred that a
maximum in catalyst activity as a function of clogP represents an
“optimal” balance between catalyst lipophilicity and hydrophili-
city (Figure 3b) or optimal rate of phase transfer. Catalysts with a
negative clogP (hydrophilic) will be rate limiting in an aqueous-
to-organic phase transfer step (k1), and catalysts with large clogP
(liphophilic) will be rate limited by an organic-to-aqueous phase
transfer step (k2). It seems likely that any phase-transfer catalysis
reaction employing quaternary ammonium ions would be amen-
able to such an analysis as long as the dominant mechanism
involved a direct aqueous-to-organic phase transfer (and vice
versa). However, in the QSAR derived above, clogP was not the
dominant term and many catalysts were not well correlated to
clogP (Results, Section 2.4.1). We therefore propose that the

Figure 8. Thermodynamic representation of the partition coefficient (clogP).

Figure 9. Kinetic representation of the partition coefficient (clogP).
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dominant mechanism does not involve a direct aqueous to organic
phase transfer, but rather, interfacial adsorption and desorption type
mechanism. The following section will consider this aspect of
proposed PTC mechanisms on a more quantitative level.
2.2. XSA as a Function of Catalyst Substitution. The descrip-

tor with the highest correlation to catalyst activity was found to
be the cross-sectional area (XSA). This descriptor is defined as
the cross-sectional area perpendicular to the amphiphilic axis and
through the centroid of the polar atoms.72 Correlation of catalyst
activity with the logarithm of the cross-sectional area was arrived
by empirical screening. Ultimately, it was found that a parabolic
relationship of catalyst activity with XSA gave the best descrip-
tion of catalyst activity (Results section 2.4 and Figure 4).
Nonlinear correlations (parabolic,5,98 sigmoidal,99 hyperbolic,100

and bilinear101) of the phase-transfer rate of small molecules with
polar surface area and lipophilicity are often observed. In this
case, the catalyst activity levels off between XSA values of ∼80
and 100 Å2 (Figure 4). Prior to analysis of the physical
interpretation of catalyst XSA some appreciation for the effect
of catalyst substitution on XSA is needed.
A representative selection of catalysts of increasing complexity

and substitution is shown in Figure 10. Projected onto each of the
catalysts are the Cartesian coordinate axes (green), the amphi-
philic axis (red-green), and the cross-sectional area (teal). In each
projection, the catalysts are oriented such that the amphiphilic
axis is parallel with the z-coordinate axis and is depicted with red
(polar centroid) and green (lipophilic centroid) spheres. The
dependence of catalyst amphiphilicity on R4 substitution is
reflected by the direction and magnitude of the amphiphilic axis
(compare Figure 10b, c, and d). In ammonium ions with no other
heteroatom-derived functional groups, the XSA passes through
the ammonium nitrogen (Figure 10b), which is the polar centroid.
For catalysts derived from the cyclopenta[gh]pyrrolizidinium
scaffold (R1, R2, R3 = H) the resulting XSA is small (∼40 Å2);
comparable to the minimum possible area for an ammonium ion
(XSA(Me4N

þ) = 28.7 Å2). Functionalization of the ammonium
scaffold with a hydroxyl group at C(1) (Figure 10c) causes the
polar centroid to shift toward this group. The now-shifted XSA
plane traverses a region of the scaffold with a greater circumfer-
ence resulting in a small increase in XSA (∼55 A2). Addition of a
non-hydrogen substituent at C(1) causes a further increase in
XSA (∼85 A2, Figure 10d). The increase in XSA from no
substituents at C(1) to hydroxy and alkoxy groups (up to ∼80 Å2)
correlates with a proportional increase in catalyst activity. Further

substitution at C(1) increases the XSA of the catalyst but a
proportional increase in catalyst activity is not observed
(Figure 4a). A slight decrease in catalyst activity is observed for
catalysts with a cross-sectional area significantly greater than
100 Å2. Thus, the XSA of the catalysts reflects the dependence of
catalyst activity on substituents at C(1), albeit in a nonlinear
fashion. This correlation warrants a more quantitative investiga-
tion by comparing catalyst subsets, which is the subject of the
next section.
2.3. Physical Interpretation of XSA. The cross-sectional area

descriptor was developed specifically to correlate the thermo-
dynamic tendency of a molecule to be in an adsorbed state at the
air/water interface.102�104 Similarly, the tendency of a catalyst to
be concentrated at the interfacial space is proposed to be a key
feature for catalysts of hydroxide-initiated PTC reactions and is
well represented as an adsorbed state.105 The two processes,
adsorption at an air/water interface and adsorption at an aqu-
eous/organic interface, are fundamentally very similar in that
they describe the thermodynamic distribution of an amphiphilic
molecule in a highly anisotropic medium.106 Concentration of an
amphiphile at the air/water interface reflects the thermodynamic
tendency of the amphiphile to be repelled from a highly polar
medium (for water; ε = 80) to a less polar one (for air; ε ∼ 1).
Expression of the same fundamental behavior in the context of
phase transfer catalysis, i.e., repulsion from a highly polar
medium (50% KOH, ε > 80) to a less polar one (for toluene
ε∼ 2.4), is shown graphically in Figure 11. In essence, this is the
defining feature of the interfacial mechanism of PTC.105

The only difference between this representation and one
involving a direct aqueous to organic phase transfer (Figure 9)
is the presence of an intermediate adsorbed state. That is, the
adsorbed state is an energetic well rather than a transition state.
However, it is not clear which of the elementary steps of the
catalytic cycle are most influenced by the XSA of the catalysts.
Interpreting the physical meaning of XSA in the context of a
phase-transfer catalytic cycle requires a few basic assumptions as
well as both kinetic and thermodynamic interpretations of clogP.
The following rationale suffices to do so with a minimal number
of well-justified assumptions. This analysis begins with the
experimental observation that the largest deviations in catalyst
activity from what would be predicted by clogP(b/w) alone
occurred when clogP(b/w) was at the optimum value (compare
blue circle to red� in Figure 3b). As previously explained, at the
experimentally observed optimum clogP value, the catalytically

Figure 10. (a) Catalyst scaffold and substitution pattern included in this study. (b) Catalyst derived from the parent scaffold. (c) C(1) hydroxyl catalyst.
(d) More highly adorned catalyst.
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relevant direct aqueous/organic phase transfer rates must be
nearly equal which means that the aqueous and organic solvation
energies of the catalyst must be equal as well (see Discussion
section 2.1). Also, because the only descriptor other than clogP in
the derived QSAR is XSA, this descriptor must account for the
deviation of catalyst activity from clogP (and vice versa). More-
over, this descriptor must be reflecting a different rate-determin-
ing step than that which is reflected in cases where clogP alone
can describe activity.
The largest deviation of the observed catalyst activity was

(conveniently) observed at the optimal clogP value (Figure 3b).
At this value, the thermodynamic solvation energies of the
catalysts are the same, so this discussion can be reduced to only
those scenarios where the aqueous and organic solvation energies
are equal. Three limiting cases representing three different
energies of an interfacially adsorbed state relative to the two
solvated states in the bulkmedia are considered (Figure 11): case 1,
wherein the adsorbed state is higher in energy; case 2, wherein
the adsorbed state is equal in energy; and case 3, wherein the
adsorbed state is lower in energy than the solvated states. In any
scenario wherein the adsorbed state is equal to (case 2) or greater
than (case 1) the solvated states, a good correlation with clogP
should hold because they represent the same rate determining
step.107 However, in any scenario wherein the adsorbed state is
lower in energy than the solvated states (case 3), two new,
potentially rate-limiting steps arise, namely, desorption from the
interface into either the organic or aqueous phases. Because XSA
describes the movement of an amphiphilic molecule from a state
of high polarity (water) to a state of low polarity (air), the
interpretation most consistent with the observed correlation of
catalyst activity is rate limiting desorption from the interface and
into the organic phase (k01, case 3, Figure 11). Recall that with
LFERs and QSARs, a correlation between activity and a de-
scriptor is a reflection of that descriptors relatedness to the
ΔΔGq of the rate-determining step. Just as with the rationaliza-
tion of clogP (Discussion section 2.1), both kinetic and a
thermodynamic interpretations are possible. Given that this is
a study of catalysis, a kinetic interpretation is more meaningful
and is described below.108

From a kinetic perspective, rate-determining interfacial de-
sorption of the catalyst 3 reactant complex is consistent with the
interfacial mechanism forwarded by Makosza.105 Because the
PTC reaction must occur in the organic phase, or at least on the
organic side of the interface where the electrophile is located,
interpretation of XSA in terms of the rate of interfacial desorption
(k01, Figure 11) makes sense.109,110 Therefore, it may be con-
cluded that the greater the cross-sectional area of the catalyst, the
faster it is repelled from the interfacial region into the organic

phase. The observed leveling of catalyst activity with increasing
XSAmay be interpreted in two nearly equivalent ways. In the first
interpretation, the observed leveling off of catalytic activity with
increasing XSA is the result of approaching the energetic scenario
where the rate of interfacial desorption and adsorption are equal
(case 2, Figure 11). In a subtly different case, one could interpret
the observed leveling of catalytic activity with increasing XSA as
approaching an upper limit in the rate of interfacial desorption,
namely, the rate of diffusion (see Figure 4a). Both of these
interpretations are consistent with the proposed interfacial
mechanism.111�113 In this way, the catalyst XSA may be treated
as an analogue of the aqueous to organic phase-transfer rate
(compare k01 in Figure 11 to k1 Figure 9). However, what is not
clear from this conclusion is whether XSA also incorporates the
competing microscopic reverse step, k02. That is, if XSA is a
reflection of the interfacial desorption rate (k01) and only the
interfacial desorption rate, then another descriptor, one to reflect
the interfacial adsorption rate (k02) would be expected. In other
words, why did the derived QSAR have two descriptors and
not three?
To investigate this question, the entire data set was distilled

down to a handful of data points by generating a large conforma-
tional library (6372 total, ∼62/catalyst)114 and then taking the
average of the XSA and catalytic activity for multiple catalyst
subtypes. These averaged catalytic activities and cross-sectional
areas are plotted against each other so that they can be compared
(Figure 12). In general, the catalyst activity (log(krel)) increases
linearly as the XSA of the catalyst increases and then levels off.
There is a linear dependence of activity on catalyst XSA when
XSA is less than or equal to∼75 Å2 (also compare Figure 10b to
Figure 10c). Once the XSA of the catalysts reaches ∼70�80 Å2

the observed activity of the catalysts changes only slightly. For the
aliphatic ammonium ions, this value corresponds to catalysts with
three or more butyl groups. For cyclopenta[gh]pyrrolizidinium
ions, this value corresponds to catalysts that have a non-hydrogen
substituent on oxygen (R3). Catalysts with R2 = H or aryl (red
circle) exhibited nearly identical activity as the aliphatic catalysts
(blue diamond), however, catalysts with R2 = aliphatic groups
(green square) exhibited slightly lower activities. Thus, as
pointed out in a qualitative way in the accompanying paper,11

catalysts bearing little or no substitution beyond the cyclopenta-
[gh]pyrrolizidium scaffold (green triangle) behave similarly to
tetraethyl- and tetrapropylammonium ions.
The most important part of analyzing the data in this way is

inspection of which types of fits best represent the summarized
data. The scatter plot of the average catalyst activity versus the
average catalyst XSA generates a distinct type of nonlinear
correlation, which is commonly encountered in enzyme

Figure 11. Analysis of XSA in terms of the relative rates of interfacial adsorption (k02) and desorption (k01).
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kinetics,115,116 surface adsorption,117 as well as the kinetics of
transfer across an interfacial barrier.101,118 Specifically, the result-
ing scatter plot was fit well by rectangular bilinear functions
(Bilinear_1 (dark blue line) and Bilinear_2 (dark blue dashed
line) in Figure 12). Also, the fact that the parabolic fit (light blue
line, Figure 12) arrived at empirically (Figure 4) was retained and
the data collected to date fills only one side of the parabola means
that more data would be needed to differentiate these interpreta-
tions. However, unlike the empirical screening that necessarily
motivated the data collection process for this study, further data
collection can be done in a quantitative manner with catalyst
structures designed to probe specific hypotheses. For a mechan-
istic interpretation of XSA, it must be recognized that each of the
phenomena described by more complex functions in Figure 12
involve processes composed of two rates that are the microscopic
reverse of one another.119 Specifically, given the data collected
thus far, three, scenarios can be envisioned for catalysts with
significantly larger cross-sectional areas (XSA > 150 Å2) than
those employed in the initial study. The simplest is that the
parabolic fit of XSA found empirically (light blue line, Figure 12
and Figure 4) would hold and no other descriptor would be
required. Mechanistically, this would mean that XSA is a reflec-
tion of k01/k02. The second possibility is that the parabolic model
would not be predictive, for which two “subclasses” can be
proposed. In the simpler of these two subclasses (BiLinear_1)
further increasing the cross-sectional area of the catalyst would
cause no change in catalyst activity. Mechanistically this would
mean that XSA is a reflection of k01, and k01 is the only rate that
matters. The reaction can never be rate determining in the
adsorption step (k02). The second more complicated subclass
is that the catalyst activity would decrease and be inversely
proportional to the ammonium ion accessibility (BiLinear_2).
Taken together with the known correlation of ammonium ion
accessibility to catalyst activity (represented by q) for other PTC
enolate alkylations, it is the latter possibility that seems most
likely. That is, for larger catalysts, the rate determining step will
likely change to adsorption to the interface (k02) and would be
better described by structural features such as polar surface area.
Fortunately, the number of possibilities is limited to three, so
with only a few carefully designed catalysts (∼3) these different
interpretations can be distinguished.

2.4. Summary of QSAR Analysis of Catalyst Activity. In
summary, a two-descriptor QSAR model of phase-transfer
catalyst activity was derived. The two descriptors were cross-
sectional area and clogP and both were correlated to catalyst
activity in a parabolic manner. Because the data was collected in a
stir-rate dependent regime, the model was subsequently inter-
preted in the context of possible rate-determining steps involving a
physical distribution of the catalyst. The QSAR modeling studies
indicate the catalytic activity of ammonium ions can be expressed as
a sum of two pairs of relative rates which define the twomechanistic
extremes of PTC. The first pair of relative rates, those of aqueous/
organic phase transfer, defines the extraction mechanism and are
readily expressed as thermodynamic partition coefficients. The other
pair of relative rates, those of adsorption/desorption from the inter-
face, describe the interfacial mechanism. The descriptor most highly
correlated to catalyst activity was XSA and was interpreted in terms
of catalyst desorption from the interface and into the organic
layer. The relative magnitudes of the coefficients in the QSAR
model indicate that for the hydroxide-initiated PTC alkylation of
glycine imine 1 the interfacial mechanism is ∼10.5 times (the
ratio of the coefficients in eq 1) more active pathway for non-Td

symmetrical quaternary ammonium ion catalysts. The fact that
similar correlations are on record for PTC reactions conducted
well above a stir-rate dependent regime indicates that the general
form of the QSAR model derived herein may be applicable to
other reaction types and catalysts.18

’CONCLUSIONS AND OUTLOOK

Multiple quantitative models were developed for the selec-
tivity and activity of the asymmetric phase transfer catalysts
reported in the accompanying paper.11 Two fundamentally
different approaches were taken to develop the activity and
selectivity models. The catalyst selectivities were modeled by
CoMFA and the catalyst activities were modeled with multilinear
regression of descriptors.

Correlations of the enantioselectivity with the steric and
electrostatic fields (55% steric; 45% electrostatic) of the catalysts
were statistically significant as determined by rigorous cross-
validation. The model was readily interpreted qualitatively as
relating to the differential binding preferences of the reactive
enolate for the catalyst in accordance with contour maps
represented as multiplicative products of coefficients of the

Figure 12. Plot of average catalyst activity versus average XSA for multiple catalyst chemotypes and corresponding regressions.
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model and the variation in the molecular interaction fields of the
catalysts. The steric field revealed differential van der Waals
repulsive interactions between the two active faces of the
catalysts available for binding as being relevant in explaining
the observed reversal in enantioselectivity with the inclusion of
bulky aliphatic groups shielding one of the two faces. The
electrostatic field revealed that higher enantioselectivity for the
S-configured product is obtained by further differentiating one
face over the other through charge polarization. The inclusion of
aryl groups at one of the faces selectively introduces positive
potential in this region as a result of the quadrupole moment
imparted by arenes, which enforces the preference for the S-
configured product. This observation may indicate an important
role forπ�π interactions at this position for this reaction system.
Additionally, the inclusion of a region of preferred negative
potential for the S configured product, coupled with the region
of preferred positive potential, may reveal a preferred dipole
orientation that allows for facial discrimination of the enolate.
Future development of more enantioselective catalysts based on
the current scaffold would involve enhancing substrate interac-
tion with the desired face for binding through the qualitative and
quantitative application of the QSSR model developed here. The
principles borne from this QSSR study may serve as criteria for
the rational design of future APTC catalysts.

For this initial report, a discovery-oriented, statistical approach
was taken to identify molecular descriptors and combinations
thereof that best accounted for the variation in catalyst activities.
Throughout the process, thousands of models with variable types
and numbers of descriptors were found that could describe the
variation in catalyst activity. It was found that models with more
than seven descriptors were not able to fit the data much better
than models with fewer descriptors. Attempts to assess the
“goodness” of models were made throughout the process by
various validation methods. The ultimate question of what
models have predictive capacity is currently being probed
experimentally with other catalyst scaffolds and reactions.

One of the descriptors identified by the “statistical screen” to
be correlated with catalyst activity was the cross-sectional area of
the catalyst. A nonlinear correlation of catalyst activity and XSA
was noted and interpreted in terms of interfacial adsorption/
desorption. Throughout the course of investigation of QSAR
models for catalyst activity, many challenges were encountered.
One of the key challenges was the identification of nonlinear
relationships, and it seems likely that similar challenges will be
intrinsically tied to any QSAR study of catalysis. The catalyst
cross-sectional area descriptor was found to be uniquely capable
of reflecting the size of the ammonium ion relevant to catalytic
activity. Future developments toward understanding and model-
ing PTC activity will focus on and test different descriptors for
the steric and electronic environment around the central ammo-
nium ion. Specifically, custom molecular shadow indices120 or
sterimol algorithms121 capable of providing information about the
steric and electrostatic environment of the central ammonium
would be worth investigating.

Drawing specific mechanistic conclusions from a QSAR study
is necessarily speculative; nonetheless, a significant effort was put
forth to do so. Accordingly, it is proposed that the greatest
contributors to the activity of ammonium ion catalysts in
hydroxide-initiated PTC reactions is their relative interfacial
adsorption/desorption abilities and to a lesser extent the com-
plete aqueous/organic phase transfer rates, two easily testable
hypotheses. The design, synthesis, evaluation, and modeling of

catalysts to test these hypotheses are currently underway and the
results will be disclosed in due course. Given the paucity of QSAR
approaches to optimizing and understanding catalytic reactions,
having a quantitative model for hypotheses testing is apparent.
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